
Physics-Inspired Adaptive Fracture Refinement

Zhili Chen∗ Miaojun Yao∗ Renguo Feng∗ Huamin Wang∗

The Ohio State University

(a) Low-resolution fracture (b) High-resolution fracture (c) Low-resolution fracture (d) High-resolution fracture

Figure 1: Marble bunny. By using Perlin noise to model a material strength field and adaptive mesh refinement to improve the fracture
surface, our method can generate detailed fracture effects (b) and (d) from a simulated low-resolution animation (a) and (c) in 11.7 seconds.

Abstract

Physically based animation of detailed fracture effects is not only
computationally expensive, but also difficult to implement due to
numerical instability. In this paper, we propose a physics-inspired
approach to enrich low-resolution fracture animation by realistic
fracture details. Given a custom-designed material strength field,
we adaptively refine a coarse fracture surface into a detailed one,
based on a discrete gradient descent flow. Using the new fracture
surface, we then generate a high-resolution fracture animation with
details on both the fracture surface and the exterior surface. Our
experiment shows that this approach is simple, fast, and friendly to
user design and control. It can generate realistic fracture animations
within a few seconds.

Keywords: Fracture animation, adaptive refinement, discrete gra-
dient flow, material strength, artistic design, animation control.

CR Categories: I.3.7 [Computer Graphics]: Three-Dimensional
Graphics—Animation.

Links: DL PDF

1 Introduction

Physically based simulation of detailed fracture effects is a difficult
problem in computer graphics. This is not only due to the compu-
tational cost that increases significantly with mesh resolution, but
also due to numerical instability when the fracture process gen-

∗e-mail: {chenzhi, yaom, fengr, whmin}@cse.ohio-state.edu

erates ill-shaped elements. Handling collisions in high-resolution
fracture simulation is also complex, since many collision detection
algorithms rely on proximity tests, while the created fracture sur-
faces are initially close to each other by default. Another issue is
the lack of animation control. Fracture simulation is sensitive to
physical parameters and mesh discretization. Therefore, simulated
low-resolution fractures can be dramatically different from high-
resolution ones, making them unsuitable for preview purposes. In
recent years, the adaptive remeshing technique has demonstrated
its efficiency and effectiveness in the simulation of detailed sur-
face meshes, such as fluid surfaces [Wojtan et al. 2010; Bojsen-
Hansen and Wojtan 2013], cloth [Narain et al. 2012], and thin
shells [Busaryev et al. 2013; Narain et al. 2013]. Unfortunately,
extending this idea to tetrahedral meshes and fracture simulation is
difficult and error-prone, as Clausen and colleagues [2013] pointed
out. Another issue is that the permissible time step may still be de-
termined by the smallest element, which makes the whole system
not as efficient as it should be.

Fracture details can also be generated in a non-physically based
way. If the details are small, they can be simply created by dis-
placement map. When the fracture details are large, they can
be pre-defined using image textures [Mould 2005], Voronoi poly-
gons [Raghavachary 2002], solids [Baker et al. 2011], tetrahe-
dra [Parker and O’Brien 2009], BSP trees [Naylor et al. 1990],
level sets [Su et al. 2009], or convex polyhedra [Müller et al. 2013].
Thanks to its efficiency, pre-fracturing has been widely used in the
game and movie industry. Since it is not based on physics, it re-
lies on artist to create the realism of fracture details inside of a 3D
object. This can be difficult and time consuming for many artists,
especially when the fractures are complex.

In this work, we propose a physics-inspired approach to enrich frac-
ture animation effects as post process. Instead of pre-defining the
fractures, we use a custom-designed material strength field to indi-
cate where fractures are likely to happen. Given a low-resolution
fracture animation, our method adaptively refines the fracture sur-
face within a 3D object. Our contributions can be summarized into
three directions:

• A Lagrangian surface evolution scheme using the discrete gra-
dient descent flow and a modified material strength field. We
formulate the gradients of the material strength field in multi-
resolution, to avoid local minimum issues.

http://doi.acm.org/10.1145/2601097.2601115
http://portal.acm.org/ft_gateway.cfm?id=2601115&type=pdf


Surface Refinement

Low-Res
Animation

Surface 
Evolution

Adaptive 
Remeshing

Surface 
Extraction

Animation 
Production

Figure 2: The system pipeline.

• An adaptive remeshing method that automatically refines the
fractures according to the surface details. We further incor-
porate constraints, such as boundary and collision constraints,
into this process.

• A high-resolution animation production approach based on
deformation transfer. Using it, we can efficiently incorporate
the generated high-resolution fractures into animation.

We implemented our methods as a novel fracture animation system
and we tested it by a set of animation examples. Our experiment
demonstrated that it can produce detailed fracture effects as shown
in Figure 1. In addition, it offers a number of advantages that cannot
be provided by previous systems.

• Simple and fast. Since our method adaptively refines the
surface mesh rather the volumetric mesh, it is simple to im-
plement and it takes only a few seconds to run, even when
handling high-resolution details.

• Artist-friendly. We believe that providing realism in a
material strength field is simpler and more intuitive than pre-
fracturing, from a designer’s perspective. For example, mate-
rial strength is often related to material appearance and it can
be modeled procedurally from solid textures.

• Controllable. Our system offers easy ways for user to
achieve desired fracture effects in high resolution. The effi-
ciency of our system makes it even possible for user to design
and control fracture animation interactively.

2 Related Work

Physically based fracture simulation. O’Brien and his col-
laborators [1999; 2002] used the finite element method to sim-
ulate the fractures of brittle and ductile objects. Müller and
colleagues [2001], Bao and collaborators [2007] and Zheng and
James [2010] performed static analysis to simulate rigid body frac-
tures. Parker and O’Brien [2009] and Su and colleagues [2009]
improved the efficiency of fracture simulation for game applica-
tions. Molino and collaborators [2004] developed a virtual node al-
gorithm to avoid ill-shaped elements in fracture simulation. Based
on a similar idea, Sifakis and collaborators [2007] simulated highly
detailed cuts using an embedded mesh. In a multi-resolution frac-
ture approach, Müller and colleagues [2004] proposed to cut high-
resolution meshes using low-resolution fractures for better surface
details. Kaufmann and collaborators [2009] adopted the XFEM
technique to enrich thin shell fractures with detailed cuts. Besides
mesh-based fracture simulation, researchers have also studied frac-
ture simulation in other representations, including level sets [Hege-
mann et al. 2013], particles [Müller 2008], polyhedra [Wicke et al.
2007; Martin et al. 2008], and point clouds [Pauly et al. 2005;
Wicke et al. 2005; Steinemann et al. 2006]. Our work is particu-
larly related to the level set fracture technique proposed by Hege-
mann and colleagues [2013], which also formulates the fracture as
the minimal solution of an energy functional.

Image segmentation and 3D reconstruction. Under the
variational framework, the idea of using a gradient descent flow to
evolve a surface for segmentation or reconstruction purposes has
been explored in computer vision [Osher and Fedkiw 2002; Jin

(a) Fracture surface (b) Fracture meshes (c) Correspondences

Figure 3: Surface representation. We use virtual fracture to form a
connected fracture surface as shown in (a) and we use a backward
remeshing step to make the mesh in the material space consistent
with the mesh in every animation frame. It is then straightforward
to build one-to-one mapping from the material space in (b) to the
animation frame in (c).

et al. 2004; Lenkiewicz et al. 2009; Delaunoy and Prados 2011].
Our work can also be broadly considered as a 3D segmentation
technique. But more importantly, our work studies how to obtain
surface details through material strength field modeling and adap-
tive refinement, which was rarely investigated in the past.

3 Overview

The pipeline of our system is shown in Figure 2. The input to
this system is a low-resolution fracture animation that can be ei-
ther generated by a physically based simulator, or manually created
by artist. In our experiment, we used the implicit corotational FEM
method [Müller et al. 2002] to simulate the dynamics and we used
the separation tensor proposed by O’Brien and Hodgins [1999] to
generate fracture cuts. To handle collisions, we applied the contin-
uous collision detection approach developed by Bridson and col-
leagues [2002]. Since the simulator runs only in low resolution,
it can robustly generate and test animation examples in real time.
Given the animation input, the system extracts the low-resolution
fracture surface and iteratively evolves it in the material space us-
ing a gradient flow. When we gradually deform the fracture surface,
we also adaptively remesh it to better reflect material strength de-
tails. The refinement process terminates when the surface change in
one iteration is sufficiently small. Finally, we can combine the high-
resolution fracture surface with the high-resolution exterior surface
to produce a detailed fracture animation.

4 Physics-Inspired Fracture Refinement

We will first present our fracture surface representation in Subsec-
tion 4.1. After that, we will discuss how to evolve it using a gradient
flow, and how to adaptively refine it using mesh operations.

4.1 Fracture Surface Representation

To simplify our fracture surface representation, we apply two pre-
processing steps to the low-resolution fracture animation. The first
step is performed on the mesh in the last animation frame to elimi-
nate incomplete fracture cuts. A fracture cut is complete, if it splits
an object into two pieces, or incomplete, if it still allows an object
to be connected. We propose a virtual fracture operation to extend
incomplete cuts to complete ones, by propagating the cuts further
in their original separation directions and computing their intersec-
tions with other surfaces. Doing this may introduce more discon-
nected pieces due to the self intersection of the newly generated vir-
tual fracture cuts, but since they are not really separated in the final
animation, they are not supposed to cause splitting artifacts. The
result is a connected non-manifold fracture surface that separates
the object into a set of connected components, as Figure 3a shows.



(a) Strength Field (b) Stress Field (c) Modified Strg. Field

Figure 4: Modified material strength field. By subtracting an es-
timated stress field in (b) from a procedurally generated strength
field in (a), we generate a modified material strength field in (c) to
model the fractures of a collapsing brick wall.

Our second step is to address mesh inconsistency when the original
mesh was remeshed by the fracture simulation technique proposed
by O’Brien and Hodgins [1999]. Our idea is to perform a backward
remeshing operation that uses the processed mesh in the last frame
to rebuild the meshes in previous frames. By doing this, we make
sure that the meshes in all of the frames have the same topology.
Intuitively, this means the object has been separated topologically
into multiple components, even before fracture events happen.

We use the same representation in the material space to represent
the low-resolution fracture surface as Figure 3b shows. Since the
meshes in the material space and in the animation frames have the
same topology, we can easily establish one-to-one mapping from a
vertex in the material space to a vertex in a frame. To help recog-
nize those vertices belonging to the same original fracture surface
vertex, we use a list to link them together. We also label out the
special edges and their vertices, if they are on the fracture surface
boundary, or shared by more than two triangles in the non-manifold
fracture surface, as those gray dots shown in Figure 3b. Finally, we
use flood fill to assign each fractured component and its mesh with
a color as shown in Figure 3c. We will use this color information to
handle deformation transfer in Section 5.

4.2 Modified Material Strength Field

In materials science, the strength of a material describes its ability
to withstand a given stress. So a fracture is formed within an object,
when its loaded stress is beyond its material strength. If the stress
is uniform, a fracture cut must be located where the strength is the
weakest. The problem is that the stress is unlikely to be uniformly
distributed in the real world. Our idea is to approximate stress vari-
ation using the low-resolution fracture surface, and then model a
modified material strength field for surface evolution afterwards.

Assuming that the material strength is isotropic, we represent it in
the material space of an object using a 3D scalar field ζ(x). This
field can be derived procedurally using solid textures, or synthe-
sized from image exemplars [Kopf et al. 2007], or even custom
designed by artist. Compared with the material strength field, the
stress field is much more difficult to obtain. This is not only be-
cause the stress field varies dynamically over time, but also because
it depends heavily on the fracture, which is supposed to be updated
by our system. To solve this problem, we assume that the low-
resolution fracture surface indicates the high stress region well. So
we can estimate the stress field ξ(x) using the Euclidean distance
from any point x to the low-resolution surface in the material space.
After we get ζ(x) and ξ(x), we subtract ξ(x) from ζ(x) to generate a
modified material strength field ψ(x). Intuitively, ψ(x) indicates the
possible region where the stress is high and the material strength is
weak. Figure 4 shows one example of a modified material strength
field, in which the low-resolution fracture surface is a straight line.

The use of this modified strength field allows convenient fracture
animation control in two ways. First of all, an artist can adjust the
definition of each function. For example, by making ξ(x) more im-
portant in ψ(x), the resulting fracture surface will become closer
to the original surface. Secondly, an artist can directly modify the
low-resolution fracture surface in the material space. The estimated
stress field ξ(x) prevents the fracture surface from traveling too far
away during surface evolution. So the low-resolution fracture an-
imation can be effectively used for design and preview purposes,
before generating high-resolution results.

4.3 The Gradient Flow and Surface Evolution

Given the modified strength field ψ(x), our next goal is find a new
fracture surface S that minimizes the following energy functional:

E(S) =

∫
S
ψ(x)ds. (1)

Using the generic formulation of the discrete gradient descent flow
given by Delaunoy and Prados [2011], we can compute the evolu-
tion velocity of vertex i as:

dxi

dt
= −

1
Ai

∑
j∈Ni

∫
S j

∇xiψ(x)φi(x)ds −
ei

j × n j

2A j

∫
S j

ψ(x)ds

 , (2)

in which Ai is the 1-ring surface area of vertex i, φi(x) is the linear
basis function, A j and n j are the area and the normal of triangle j in
vertex i’s neighborhood, and ei

j is an edge of triangle j opposing to
vertex i. To avoid the complexity of evaluating the first integral in
Equation 2, we assume1 that ∇xiψ(x) is equivalent to ∇ψ(xi) within
the triangle surface. By approximating ψ(x) in the triangle using
linear interpolation, we can reformulate Equation 2 into:

dxi

dt
= −

1
Ai

∑
j∈Ni

(
1
3

A j∇ψ(xi) −
ei

j × n j

2A j

∑
k∈T j

ψ(xk)
)
, (3)

in which k is a vertex of triangle j. We note that when ψ(x) ≡ 1,
E(S) in Equation 1 becomes the surface energy and Equation 3
is identical to the surface-based mean curvature flow proposed by
Meyer and collaborators [2002]. Meanwhile, if the surface is lo-
cally planar at vertex i and ∇φ(x) is constant and parallel to the sur-
face, it can be proved that dxi

dt = 0. In other words, the vertices will
not be clustered, due to material strength variations on the surface.

Since i is a vertex of the non-manifold surface in Equation 3, to enu-
merate all of its adjacent triangles, we use the linked list presented
in Subsection 4.1 to find its corresponding vertices and their adja-
cent triangles in our surface representation. We then compute its
new position and use the linked list again to update the positions of
all corresponding vertices. We note that the discrete gradient flow
in Equation 3 works well for non-manifold fracture surfaces in our
case, even though it was initially developed for manifold surfaces.

A critical question here is how we can compute the gradient of ψ(x).
In our system, we use a uniform grid to present the strength field
ψ(x) and we use finite differencing to calculate its gradient. But
if the gradient kernel is not large enough, this method can easily
suffer from the local minimum issue. Inspired by feature detection
and image segmentation techniques (such as SIFT [Lowe 2004]),
we propose to use a Gaussian smoothing filter to build a material
strength field pyramid during the initialization step. After that, we
compute the gradient of each vertex as the average of its gradients
at all pyramid levels. We typically use 4 to 6 pyramid levels in our
experiment. Doing this effectively avoids the local minimum issue.

1Mathematically, this is similar to replacing the “mass” matrix by the
vertex area Ai, as suggested by Eckstein and colleagues [2007].



(a) Original (b) After two iterations (c) After 16 iterations

Figure 5: Fracture surface mesh during the refinement process.

4.4 Adaptive Fracture Remeshing

To make the fracture surface more accurately reflect the underly-
ing details in the material strength field, we adaptively remesh it
after it is evolved in each iteration. A typical adaptive remeshing
technique proposed by Narain and colleagues [2012; 2013] is to
perform edge split and edge merge. While this technique can han-
dle detailed surface wrinkles, it is not very suitable in our system,
when the details are defined over the surface area. So instead, we
propose to randomly select a sample within a triangle and compute
the new position of this point using the evolution function in Equa-
tion 3, in which case its neighborhood is the whole triangle. If it
moves too far away from the triangle after one iteration, we add
it as a new vertex and subdivide the triangle into three new trian-
gles. To avoid unnecessary computation, we discard a sample point
if it is too close to a triangle vertex. To refine the fracture surface
boundary, we select samples on the boundary edges instead, if a tri-
angle is on the boundary. For the same reason, we select samples
on an edge if it was originally shared by more than two triangles in
the non-manifold fracture surface. Although similar coplanar crite-
ria can be used to remove a vertex and re-triangulate its neighbor-
hood, we do not think it is necessary, since the surface is supposed
to obtain more details during its evolution. Once we create a new
vertex and subdivide a triangle for one connected component, we
use the linked list described in Subsection 4.1 to update the meshes
of other components accordingly. This ensures that the underlying
non-manifold fracture surface is still consistently represented.

After we remesh the fracture surface, we perform three additional
steps to improve it. Similar to the remeshing step, these steps are
performed once for all object components using the linked list. Fig-
ure 5 shows the results of the overall mesh refinement process of the
brick wall example.

Edge flip. We apply the edge flip method on an edge to re-
duce slim triangles caused by surface evolution or remeshing, un-
less the edge cannot be flipped (i.e., does not have exactly two tri-
angle neighbors on the original non-manifold surface).

Boundary constraint. The vertices on the fracture surface
boundary must stay on the exterior surface of the object. To prevent
them from escaping the exterior surface, we project them back onto
a user-defined high-resolution exterior surface after each iteration.

Collision constraints. We use the continuous collision de-
tection approach [Bridson et al. 2002] to detect self collisions of
the fracture surface. After we find each colliding vertex-triangle or
edge-edge pair, we simply stop their vertex motions to prevent them
from penetrating into each other.

A newly added vertex does not have its correspondence in anima-
tion, which can become a problem when we calculate the deforma-
tion for every fracture surface vertex during our high-resolution ani-
mation production in Section 5. To solve this problem, we associate

(a) Material space (b) Animation space

Figure 6: Fracture surface generation. By using the tree structure
and linear interpolation to estimate the deformation of each high-
resolution fracture vertex in the material space, we can transfer
the high-resolution fracture surface from the material space to the
animation space in each frame.

each new vertex with the three triangle indices and the barycentric
weights, from which it was created. Since we perform the adaptive
refinement step multiple times, we can intuitively consider this data
structure as a tree, where the root is a new vertex and the leaves
are the old vertices in the low-resolution mesh. By doing linear in-
terpolation, we can use it to compute various quantities for every
vertex on the refined mesh, such as deformation and fracture time.

5 High-Resolution Animation Production

After we obtain a detailed fracture surface in Section 4, we can now
generate high-resolution fracture animation. Our basic idea here is
to replace the low-resolution meshes in each frame by the high-
resolution meshes in the material space using deformation transfer.

Fracture surface generation. To replace the low-resolution
fracture surface by the high-resolution one in each animation frame,
we first compute the deformation of each low-resolution fracture
vertex. If the low-resolution fracture animation was simulated as in
our experiment, we can calculate the deformation of each vertex by
interpolating the deformation of its adjacent tetrahedra. If the frac-
ture surface and the animation was created by artist instead, we can
still use the approach proposed by Sumner and Popović [2004] to
calculate vertex deformation from its adjacent triangles. After that,
we use the tree data structure in Subsection 4.4 to propagate the
deformation from low-resolution mesh vertices to high-resolution
ones in each animation frame. Specifically, the tree structure indi-
cates that each vertex on the high-resolution fracture surface can be
considered as a combination of the vertices on the low-resolution
surface, as Figure 6a shows in the material space. Using the asso-
ciated interpolation weights, we can interpolate vertex deformation
and then transfer the high-resolution fracture surface from the ma-
terial space to the animation space. This implies that the object
is always disconnected topologically over the whole animation se-
quence. However, the actual separation events are determined by
the underlying deformation. If the components have different de-
formations as in Figure 6b, they will be disconnected. Otherwise,
they will be connected until they receive different deformations.

Exterior surface generation. After we replace the fracture
surface, we also need to replace the exterior surface in animation
by a user-defined high-resolution one. Our first step is to calculate
the intersection between the high-resolution exterior surface B and
the high-resolution fracture surface S. According to Subsection 4.4,
each vertex on the high-resolution fracture surface boundary ∂S has
already been projected onto B. So we apply the surface traversal
technique (such as in [Chen et al. 2013]) to calculate the geodesic
path of ∂S and find the intersection points between ∂S and B, as
the small dots shown in as Figure 7. We then use the intersection
points to remesh the boundary triangles of both B and S, and we use
the geodesic path to split B into multiple patches, each of which



S

B

𝝏S

Figure 7: Exterior surface generation. We use surface traversal
to calculate the intersection between the fracture surface S and the
exterior surface B. After that, we remesh both surfaces and we
merge them to obtain a watertight mesh for each component.

(a) Material space (b) Early fracture (c) Our solution

Figure 8: Early fracture. When boundary vertices are mapped to
different points on the low-resolution surface, they will receive dif-
ferent deformations and cause an early fracture problem. By con-
sidering the actual fracture time, our solution fixes this problem.

represents the exterior surface of one component. After that, we
merge S and each patch to form a watertight high-resolution mesh
for every component.

For animation production, we also transfer the high-resolution ex-
terior surface from the material space to the animation space. To
obtain the deformation of each high-resolution exterior vertex, we
simply find the nearest low-resolution surface location that belongs
to the same component, as shown in Figure 8a. We then transfer the
deformation of that nearest location.

Discussion. When the object undergoes large deformation
and the refinement process causes large difference between the low-
resolution fracture and the high-resolution fracture, an early frac-
ture problem may appear as Figure 8b shows. In this example, high-
resolution boundary vertices corresponding to the same location in
the material space are mapped to different low-resolution locations,
since they belong to different components. As a result, the vertices
receive different deformations and the components become discon-
nected, before the actual fracture happens. To solve this problem,
we compute the fracture time of each vertex according to the low-
resolution animation, using the tree data structure in Subsection 4.4.
We then use the same nearest low-resolution location to calculate
the deformation for both boundary vertices regardless of their com-
ponent identities as shown in Figure 8c, until the fracture time is
reached. Doing this will eliminate the early fracture issue, but it
may cause a sudden change on the object surface when the fracture
begins. Fortunately, if the fracture is formed gradually, this change
is small; if the fracture is formed rapidly, it is hardly noticeable, as
our experiment shows.

A more problematic issue is self collisions due to the changed frac-
ture details. Unfortunately, the only viable solution we know is to
treat our result as pre-defined fractures and re-simulate the whole
animation in high resolution, which will be computationally expen-
sive. We ignore such a problem in our current system at this time.

(a) Original result (b) Our result

Figure 9: Tree branch. Using a simple material strength field, our
method can generate detailed fracture patterns on this tree branch.

6 Results and Discussions

(Please see the supplementary video for more animation examples.)
We test the performance of our algorithms using a single core of a
3.4GHz Intel Core i7-2600 processor. The material strength fields
in all of the four examples are modeled by procedural functions.
We use a regular grid to sample each procedural function and build
a material strength pyramid. This initialization step typically takes
about 10 to 30 seconds to run and it is done only once. The mesh re-
finement process in our system requires most of the computational
cost, which is fortunately independent of the animation length spec-
ified by the low-resolution animation input. After mesh refinement,
high-quality animation can be produced in real time as proposed in
Section 5.

Marble bunny. In this example, we assign the bunny with a solid
marble texture as Figure 1 shows. The blue region of this texture,
modeled by high-frequency Perlin noise, contains fine and hard
grains; the white region of this texture, modeled by low-frequency
Perlin noise, is smooth and soft. We sample this texture using a
50 × 50 × 50 grid. Our system refines a low-resolution fracture
surface with 256 triangles to a high-resolution surface with 174K
triangles in 11.7 seconds.

Tree branch. We model a broken tree branch as a cylinder sepa-
rated by an incomplete fracture cut in the middle, as Figure 9 shows.
We procedurally define the strength of this cylinder, such that it is
soft inside but hard outside. We also add elongated Perlin noise
to make the fracture surface favor the cylinder axis direction. We
use a 32 × 32 × 64 grid and we spend 5.0 seconds to generate a
high-resolution fracture surface containing 123K triangles, from a
low-resolution one containing 60 triangles.

Collapsing wall. A brick wall collapses due to a wrecking ball
in this example. The material strength of this wall is strong in both
the bricks and the mortar, but weak on the boundary. As a result,
the fracture surface is likely to follow the brick-mortar boundary as
Figure 10 shows. Here the material strength field is represented by
a 150 × 50 × 10 grid. It takes 13.6 seconds to refine the fracture
surface from 204 triangles to 208K triangles.

Plastic clay. This example (in Figure 11) demonstrates the use
of our system in handling fracture cuts caused by large plastic and
twisting deformation, as long as the deformation is covered by low-
resolution simulation. Here we use a 32 × 64 × 64 grid to represent
the material strength field. The low-resolution fracture surface con-
tains 510 triangles and the refined one contains 40K triangles. The
refinement process takes 3 seconds to run.

Jell-O. Our final example is a bouncy Jell-O stuffed with fruit
cubes in different colors, as shown in Figure 12. It shows that our



Figure 10: Collapsing wall. In less than 14 seconds, our method
generates highly detailed fracture surfaces for this brick wall.

(a) Original result (b) Our result

Figure 11: Twisted plastic clay. Our method generates detailed
fractures under large twisting and plastic deformation, as long as
it is covered by the low-resolution animation input.

system can also handle gradual fracture effects in large elastic de-
formation. We use a 64 × 64 × 32 grid to represent the material
strength field in this example. The low-resolution fracture surface
contains 488 triangles and the refined one contains 32K triangles.
The refinement process runs for 3 seconds.

Our preliminary test shows that it takes more than 30 minutes for
our physically based simulator to generate one frame in the same
resolution as ours, which is orders-of-magnitude slower than our
method. Since it is too time consuming and our simulator may suf-
fer from numerical instability in high resolution, we do not simulate
high-resolution results for comparison purposes. We would like to
emphasize that it is also difficult to obtain desired, controllable frac-
ture effects from high-resolution fracture simulation, but it is easy
to achieve by our method.

Limitations. While our method can produce realistic fracture
surfaces in high resolution, it is not supposed to be physically ac-
curate. Our method considers only the heterogeneity of the mate-
rial strength, and it is not clear to us whether it can be extended to
handle anisotropic material strength. When our method evolves and
refines the fracture surface, it maintains the surface topology so that
it cannot create novel fracture cuts. Besides, if the refined fracture
is too far away from original fracture, the high-resolution anima-
tion cannot fully transfer nonlinear elastic or plastic deformation
near the fracture cut. Our method refines only the fracture surface
details, but not the fracture time. In other words, the fracture for-
mation in high-resolution animation may still not be smooth, due
to the low-resolution animation. Currently, we require the fracture
surface meshes to move consistently as a single non-manifold sur-
face. But we should allow them to move separately in the future,
to handle objects with interior holes. Finally, handling collisions

(a) Original result (b) Our result

Figure 12: Jell-O with fruit cubes. Our method can also handle
fractures in large elastic deformation, as shown in this example.

in high resolution is computationally expensive and we do not con-
sider it so far. It can be easily added, if it is necessary.

7 Conclusions and Future Work

In conclusion, we proposed an adaptive refinement approach to pro-
duce high-resolution fracture details in animation. Our experiment
demonstrated that these details can be efficiently and easily gener-
ated without physically based simulation in high resolution. This
approach can be used as a powerful tool for designers and artists to
create high-quality fracture animation effects with easy control.

Looking into the future, our immediate plan is to make our sys-
tem more efficient, by improving our remeshing scheme to reduce
unnecessary triangles. We are also interested in other ways to pro-
duce high-resolution animation, such as re-simulation using new
embedded meshes as proposed by Sifakis and collaborators [2007].
Finally, we plan to study incremental fracture refinement without
using the whole low-resolution animation sequence. The resulting
technique will be useful for interactive applications, such as games.

8 Acknowledgment

The authors would like to thank Nvidia and Adobe for their fund-
ing and equipment support. This work is also funded by the open
project program of the State Key Lab of CAD&CG at Zhejiang
University.

References

Baker, M., Carlson, M., Coumans, E., Criswell, B., Harada, T.,
Knight, P., and Zafar, N. B. 2011. Destruction and dynamic
artist tools for film and game production. In ACM SIGGRAPH
2011 course notes.

Bao, Z., Hong, J.-M., Teran, J., and Fedkiw, R. 2007. Fracturing
rigid materials. IEEE Transactions on Visualization and Com-
puter Graphics 13, 2 (Mar.), 370–378.

Bojsen-Hansen, M., andWojtan, C. 2013. Liquid surface tracking
with error compensation. ACM Trans. Graph. (SIGGRAPH) 32,
4 (July), 68:1–68:13.

Bridson, R., Fedkiw, R., and Anderson, J. 2002. Robust treat-
ment of collisions, contact and friction for cloth animation. ACM
Trans. Graph. (SIGGRAPH) 21, 3 (July), 594–603.

Busaryev, O., Dey, T. K., and Wang, H. 2013. Adaptive frac-
ture simulation of multi-layered thin plates. ACM Trans. Graph.
(SIGGRAPH) 32, 4 (July), 52:1–52:6.



Chen, Z., Feng, R., and Wang, H. 2013. Modeling friction and
air effects between cloth and deformable bodies. ACM Trans.
Graph. (SIGGRAPH) 32, 4 (July), 88:1–88:8.

Clausen, P., Wicke, M., Shewchuk, J. R., and O’Brien, J. F. 2013.
Simulating liquids and solid-liquid interactions with lagrangian
meshes. ACM Trans. Graph. 32, 2 (Apr.), 17:1–15.

Delaunoy, A., and Prados, E. 2011. Gradient flows for optimizing
triangular mesh-based surfaces: Applications to 3D reconstruc-
tion problems dealing with visibility. International Journal of
Computer Vision 95, 2, 100–123.

Eckstein, I., Pons, J.-P., Tong, Y., Kuo, C.-C. J., and Desbrun, M.
2007. Generalized surface flows for mesh processing. In Proc.
of SGP, 183–192.

Hegemann, J., Jiang, C., Schroeder, C., and Teran, J. M. 2013. A
level set method for ductile fracture. In Proc. of SCA, 193–201.

Jin, H., Yezzi, A. J., and Soatto, S. 2004. Region-based segmenta-
tion on evolving surfaces with application to 3D reconstruction
of shape and piecewise constant radiance. In ECCV, 114–125.

Kaufmann, P., Martin, S., Botsch, M., Grinspun, E., andGross, M.
2009. Enrichment textures for detailed cutting of shells. ACM
Trans. Graph. (SIGGRAPH) 28, 3 (July), 50:1–50:10.

Kopf, J., Fu, C.-W., Cohen-Or, D., Deussen, O., Lischinski, D., and
Wong, T.-T. 2007. Solid texture synthesis from 2D exemplars.
ACM Trans. Graph. (SIGGRAPH) 26, 3 (July).

Lenkiewicz, P., Pereira, M., Freire, M. M., and Fernandes, J.
2009. The whole mesh deformation model for 2D and 3D image
segmentation. In ICIP, IEEE, 4045–4048.

Lowe, D. G. 2004. Distinctive image features from scale-invariant
keypoints. Int. J. Comput. Vision 60, 2 (Nov.), 91–110.

Martin, S., Kaufmann, P., Botsch, M., Wicke, M., and Gross, M.
2008. Polyhedral finite elements using harmonic basis functions.
In Proc. of SGP, 1521–1529.

Meyer, M., Desbrun, M., Schroder, P., and Barr, A. H.
2002. Discrete differential-geometry operators for triangulated
2-manifolds. In VisMath, Springer-Verlag, 35–57.

Molino, N., Bao, Z., and Fedkiw, R. 2004. A virtual node al-
gorithm for changing mesh topology during simulation. ACM
Trans. Graph. (SIGGRAPH) 23, 3 (Aug.), 385–392.

Mould, D. 2005. Image-guided fracture. In Proceedings of Graph-
ics Interface 2005, GI ’05, 219–226.

Müller, M., and Gross, M. 2004. Interactive virtual materials. In
Proceedings of Graphics Interface 2004, GI ’04, 239–246.

Müller, M., McMillan, L., Dorsey, J., and Jagnow, R. 2001. Real-
time simulation of deformation and fracture of stiff materials. In
Proc. of SCA, 113–124.

Müller, M., Dorsey, J., McMillan, L., Jagnow, R., and Cutler, B.
2002. Stable real-time deformations. In Proc. of SCA, 49–54.

Müller, M., Chentanez, N., and Kim, T.-Y. 2013. Real time dy-
namic fracture with volumetric approximate convex decompo-
sitions. ACM Trans. Graph. (SIGGRAPH) 32, 4 (July), 115:1–
115:10.

Müller, M. 2008. Hierarchical position based dynamics. In VRI-
PHYS, 1–10.

Narain, R., Samii, A., andO’Brien, J. F. 2012. Adaptive anisotropic
remeshing for cloth simulation. ACM Trans. Graph. (SIG-
GRAPH Asia) 31, 6 (Nov.), 152:1–152:10.

Narain, R., Pfaff, T., and O’Brien, J. F. 2013. Folding and crum-
pling adaptive sheets. ACM Trans. Graph. (SIGGRAPH) 32, 4
(July), 51:1–51:8.

Naylor, B., Amanatides, J., and Thibault, W. 1990. Merging
BSP trees yields polyhedral set operations. SIGGRAPH Com-
put. Graph. 24, 4 (Sept.), 115–124.

O’Brien, J. F., and Hodgins, J. K. 1999. Graphical modeling and
animation of brittle fracture. In Proc. of SIGGRAPH 98, Annual
Conference Series, 137–146.

O’Brien, J. F., Bargteil, A. W., andHodgins, J. K. 2002. Graphical
modeling and animation of ductile fracture. ACM Trans. Graph.
(SIGGRAPH) 21, 3 (July), 291–294.

Osher, S. J., and Fedkiw, R. P. 2002. Level Set Methods and Dy-
namic Implicit Surfaces. Springer-Verlag.

Parker, E. G., and O’Brien, J. F. 2009. Real-time deformation and
fracture in a game environment. In Proc. of SCA, 165–175.

Pauly, M., Keiser, R., Adams, B., Dutré, P., Gross, M., andGuibas,
L. J. 2005. Meshless animation of fracturing solids. ACM Trans.
Graph. (SIGGRAPH) 24, 3 (July), 957–964.

Raghavachary, S. 2002. Fracture generation on polygonal meshes
using voronoi polygons. In ACM SIGGRAPH 2002 Conference
Abstracts and Applications, SIGGRAPH ’02, 187–187.

Sifakis, E., Der, K. G., and Fedkiw, R. 2007. Arbitrary cutting of
deformable tetrahedralized objects. In Proc. of SCA, 73–80.

Steinemann, D., Otaduy, M. A., and Gross, M. 2006. Fast arbitrary
splitting of deforming objects. In Proc. of SCA, 63–72.

Su, J., Schroeder, C., and Fedkiw, R. 2009. Energy stability and
fracture for frame rate rigid body simulations. In Proc. of SCA,
155–164.

Sumner, R. W., and Popović, J. 2004. Deformation transfer for
triangle meshes. ACM Trans. Graph. (SIGGRAPH) 23, 3 (Aug.),
399–405.

Wicke, M., Steinemann, D., and Gross, M. H. 2005. Efficient ani-
mation of point-sampled thin shells. Computer Graphics Forum
(Eurographics) 24, 3, 667–676.

Wicke, M., Botsch, M., and Gross, M. 2007. A finite element
method on convex polyhedra. Computer Graphics Forum (Euro-
graphics) 26, 3, 355–364.

Wojtan, C., Thürey, N., Gross, M., and Turk, G. 2010. Physics-
inspired topology changes for thin fluid features. ACM Trans.
Graph. (SIGGRAPH) 29, 4 (July), 50:1–50:8.

Zheng, C., and James, D. L. 2010. Rigid-body fracture sound with
precomputed soundbanks. ACM Trans. Graph. (SIGGRAPH) 29,
4 (July), 69:1–69:13.


